Type

Journal Article

Authors

Jonathan Coleman

Subjects

Physics

Topics
production boron nitride optical spectroscopy size large scale two dimensional 2d inorganic nanosheets molybdenum disulphide production methods

Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation (2015)

Abstract In order to fulfil their potential for applications, it will be necessary to develop large-scale production methods for two-dimensional (2D) inorganic nanosheets. Here we demonstrate the large-scale shear-exfoliation of molybdenum disulphide nanosheets in aqueous surfactant solution using a kitchen blender. Using standard procedures, we measure how the MoS2 concentration and production rate scale with processing parameters. However, we also use recently developed methods based on optical spectroscopy to simultaneously measure both nanosheet lateral size and thickness, allowing us to also study the dependence of nanosheet dimensions on processing parameters. We found the nanosheet concentration and production rates to depend sensitively on the mixing parameters (the MoS2 concentration, Ci; the mixing time, t; the liquid volume, V; and the rotor speed, N). By optimising mixing parameters, we achieved concentrations and production rates as high as 0.4 mg/ml and 1.3 mg/min respectively. Conversely, the nanosheet size and thickness were largely invariant with these parameters. The nanosheet concentration is also extremely sensitive to the surfactant concentration. However, more interestingly the nanosheet lateral size and thickness also varied strongly with the surfactant concentration. This allows the mean nanosheet dimensions to be controlled during shear exfoliation at least in the range ~40-220 nm for length and ~2-12 layers for thickness. We demonstrate the importance of this by showing that the MoS2 nanosheets prepared using different surfactant concentrations, and so displaying different nanosheets sizes, perform differently when used as hydrogen evolution catalysts. We find the nanosheets produced using high surfactant concentrations, which gives smaller flake sizes, perform significantly better, consistent with catalysis occurring at nanosheet edges. Finally, we also demonstrate that shear exfoliation using a kitchen blender is not limited to MoS2 but can also be achieved for boron nitride and tungsten disulphide.
Collections Ireland -> Trinity College Dublin -> RSS Feeds
Ireland -> Trinity College Dublin -> School of Physics
Ireland -> Trinity College Dublin -> Physics (Scholarly Publications)
Ireland -> Trinity College Dublin -> RSS Feeds
Ireland -> Trinity College Dublin -> Physics

Full list of authors on original publication

Jonathan Coleman

Experts in our system

1
Jonathan Coleman
Trinity College Dublin
Total Publications: 217