We describe a method for player detection in field sports with a fixed camera set-up based on a new player feature extraction strategy. The proposed method detects players in static images with a sliding window technique. First, we compute a binary edge image and then the detector window is shifted over the edge regions. Given a set of binary edges in a sliding window, we introduce and solve a particular diffusion equation to generate a shape information image. The proposed diffusion to generate a shape information image is the key stage and the main theoretical contribution in our new algorithm. It removes the appearance variations of an object while preserving the shape information. It also enables the use of polar and Fourier transforms in the next stage to achieve scale and rotation invariant feature extraction. A Support Vector Machine (SVM) classifier is used to assign either player or non-player class inside a detector window. We evaluate our approach on three different field hockey datasets. In general, results show that the proposed feature extraction is effective, and performs competitive results compared to the state-of-the-art methods.
Ireland ->
Dublin City University ->
Subject = Computer Science: Image processing
Ireland ->
Dublin City University ->
Publication Type = Article
Ireland ->
Dublin City University ->
Status = Published
Ireland ->
Dublin City University ->
DCU Faculties and Centres = DCU Faculties and Schools: Faculty of Engineering and Computing: School of Electronic Engineering
Ireland ->
Dublin City University ->
Subject = Computer Science: Digital video
Ireland ->
Dublin City University ->
DCU Faculties and Centres = Research Initiatives and Centres: INSIGHT Centre for Data Analytics
Noel E. O'Connor,
Melike Sah,
Cem Direkoglu