Journal Article


Andy Way
Jinhua Du



machine translation english statistical machine translation translation quality machine translating helpful speech class

Pre-reordering for neural machine translation: helpful or harmful? (2017)

Abstract Pre-reordering, a preprocessing to make the source-side word orders close to those of the target side, has been proven very helpful for statistical machine translation (SMT) in improving translation quality. However, is it the case in neural machine translation (NMT)? In this paper, we firstly investigate the impact of pre-reordered source-side data on NMT, and then propose to incorporate features for the pre-reordering model in SMT as input factors into NMT (factored NMT). The features, namely parts-of-speech (POS), word class and reordered index, are encoded as feature vectors and concatenated to the word embeddings to provide extra knowledge for NMT. Pre-reordering experiments conducted on Japanese↔English and Chinese↔English show that pre-reordering the source-side data for NMT is redundant and NMT models trained on pre-reordered data deteriorate translation performance. However, factored NMT using SMT-based pre-reordering features on Japanese→English and Chinese→English is beneficial and can further improve by 4.48 and 5.89 relative BLEU points, respectively, compared to the baseline NMT system.
Collections Ireland -> Dublin City University -> DCU Faculties and Centres = DCU Faculties and Schools: Faculty of Engineering and Computing: School of Computing
Ireland -> Dublin City University -> DCU Faculties and Centres = Research Initiatives and Centres: ADAPT
Ireland -> Dublin City University -> Publication Type = Article
Ireland -> Dublin City University -> Status = Published
Ireland -> Dublin City University -> Subject = Computer Science: Machine translating

Full list of authors on original publication

Andy Way, Jinhua Du

Experts in our system

Andy Way
Dublin City University
Total Publications: 229
Jinhua Du
Dublin City University
Total Publications: 38