Type

Other / n/a

Authors

Charles Markham
William Clifford

Subjects

Computer Science

Topics
machine vision neural network imaging engineering object removal video image processing driving simulation

Ghost Towns: Semantically Labelled Object Removal From Video (2019)

Abstract This paper describes a method used to produce a video of a road in which the foreground itemswhich obstruct the view of the road have been removed i.e. other vehicles. Once these regions have been identified they are replaced using suitable images that closely resemble the original background. The work considers an approach that uses multiple video sequences of the same road (C1...Cn). One video is identified as video Cp , that requires the least repair. All instances of vehicles in each frame of video were identified using a Convolutional Neural Network (CNN). The regions associated with each vehicle were then filled using suitable regions from the frames from the remaining streams (assuming at least one of these streams has a background region visible which matches our query region in Cp ). To match frames and locate suitable patches ideally the video sequences need to be aligned both temporally and structurally. To match the frames temporally a bag of visual words approach was taken. To align the frames structurally a template search was performed on regions surrounding the region to be replaced. Given the template matches, the region between these templates in the matching frame were used to fill where the vehicles were previously, leaving behind only the background.
Collections Ireland -> TU Dublin -> IMVIP 2019: Irish Machine Vision and Image Processing
Ireland -> TU Dublin -> Session 4: 2D, 3D Scene Analysis and Visualisation
Ireland -> TU Dublin -> Colleges
Ireland -> TU Dublin -> College of Engineering and Built Environment
Ireland -> TU Dublin -> Conferences: Engineering and Built Environment

Full list of authors on original publication

Charles Markham, William Clifford

Experts in our system

1
Charles Markham
Maynooth University
Total Publications: 64