We present a novel AI-based approach to the few-shot automated segmentation of mitochondria in large-scale electron microscopy images. Our framework leverages convolutional features from a pre-trained deep multilayer convolutional neural network, such as VGG-16. We then train a binary gradient boosting classifier on the resulting high-dimensional feature hypercolumns. We extract VGG-16 features from the first four convolutional blocks and apply bilinear upsampling to resize the obtained maps to the input image size. This procedure yields a 2688-dimensional feature hypercolumn for each pixel in a 224 x 224 input image. We then apply L1-regularized logistic regression for supervised active feature selection to reduce dependencies among the features, to reduce overfitting, as well as to speed-up gradient boosting-based training. During inference we block process 1728 x 2022 large microscopy images. Our experiments show that in such a formulation of transfer learning our processing pipeline is able to achieve high-accuracy results on very challenging datasets containing a large number of irregularly shaped mitochondria in cardiac and outer hair cells. Our proposed few-shot training approach gives competitive performance with the state-of-the-art using far less training data.
Ireland ->
Dublin City University ->
Subject = Computer Science: Artificial intelligence
Ireland ->
Dublin City University ->
Subject = Computer Science: Image processing
Ireland ->
Dublin City University ->
Publication Type = Article
Ireland ->
Dublin City University ->
Status = Published
Ireland ->
Dublin City University ->
DCU Faculties and Centres = DCU Faculties and Schools: Faculty of Engineering and Computing: School of Electronic Engineering
Ireland ->
Dublin City University ->
Subject = Computer Science: Algorithms
Ireland ->
Dublin City University ->
DCU Faculties and Centres = Research Initiatives and Centres: INSIGHT Centre for Data Analytics
Ireland ->
Dublin City University ->
Subject = Computer Science: Machine learning
Noel E. O'Connor,
Alfred Nuttall,
Teresa Wilson,
Sandra Rugonyi,
Kevin McGuinness,
Julia Dietlmeier