Type

Journal Article

Authors

Andy Way
Yanjun Ma

Subjects

Linguistics

Topics
pb smt training data phrase based smt target language phrase based statistical machine translation state of the art machine translating statistical machine translation

Bilingually motivated word segmentation for statistical machine translation (2009)

Abstract We introduce a bilingually motivated word segmentation approach to languages where word boundaries are not orthographically marked, with application to Phrase-Based Statistical Machine Translation (PB-SMT). Our approach is motivated from the insight that PB-SMT systems can be improved by optimizing the input representation to reduce the predictive power of translation models. We firstly present an approach to optimize the existing segmentation of both source and target languages for PB-SMT and demonstrate the effectiveness of this approach using a Chinese–English MT task, that is, to measure the influence of the segmentation on the performance of PB-SMT systems. We report a 5.44% relative increase in Bleu score and a consistent increase according to other metrics. We then generalize this method for Chinese word segmentation without relying on any segmenters and show that using our segmentation PB-SMT can achieve more consistent state-of-the-art performance across two domains. There are two main advantages of our approach. First of all, it is adapted to the specific translation task at hand by taking the corresponding source (target) language into account. Second, this approach does not rely on manually segmented training data so that it can be automatically adapted for different domains.
Collections Ireland -> Dublin City University -> Publication Type = Article
Ireland -> Dublin City University -> Subject = Computer Science
Ireland -> Dublin City University -> DCU Faculties and Centres = Research Initiatives and Centres: Centre for Next Generation Localisation (CNGL)
Ireland -> Dublin City University -> Status = Published
Ireland -> Dublin City University -> Subject = Computer Science: Machine translating
Ireland -> Dublin City University -> DCU Faculties and Centres = Research Initiatives and Centres: National Centre for Language Technology (NCLT)
Ireland -> Dublin City University -> DCU Faculties and Centres = Research Initiatives and Centres

Full list of authors on original publication

Andy Way, Yanjun Ma

Experts in our system

1
Andy Way
Dublin City University
Total Publications: 229