Type

Journal Article

Authors

D.J. Browne
Z Kovacs
Sumsun Naher
Dermot Brabazon
S.N. Aqida

Subjects

Engineering

Topics
peak power scanning electron microscopy sem materials cu mould casting duty cycle microstructural study arc melting mechanical engineering

Laser micro-processing of amorphous and partically crystalline Cu45Zr48Al7 alloy (2010)

Abstract This paper presents a microstructural study of laser micro-processed high purity Cu45Zr48Al7 alloys prepared by arc melting and Cu-mould casting. Micro-processing of the Cu45Zr48Al7 alloy was performed using a Rofin DC-015 diffusion-cooled CO2 slab laser system with 10.6 μm wavelength. The laser was defocused to a spot size of 0.2 mm on the sample surface. The laser parameters were set to give 300 and 350 W peak power, 30% duty cycle and a 3000 Hz laser pulse repetition frequency (PRF). The PRF and duty cycle resulted a 0.1 ms pulse duration. About 100 micrometer wide channels were scribed on the surfaces of disk shaped amorphous and partially crystalline samples at traverse speeds of 500 and 5000 mm/min. These channels were analysed using scanning electron microscopy (SEM) and 2D stylus profilometry. The metallographic study and profile of these processed region sare discussed in terms of the applied laser processing parameters. The SEM micrographs showed that striation marks developed at the edge and inside these regions as a result of the laser processing. Grain formation occurred with the processed regions for processing traverse speeds of 500 mm/min in the partially crystalline samples. For the amorphous structure, channel widths of 149.6 Am, 102.2 Am and 77.4 Am were measured. Using the same processing parameters, channel widths of 158.4 Am, 122.0 Am and 91.2 Am were measured on the partially crystalline alloy surface. The scribed regions showed a maximum depth of 1.4 Am and interesting height increases above the original sample surface height of 2 Am on the amorphous sample. Micro-segregation was recorded on the samples surfaces at processing parameters of 300 W and 7.20 ms exposure time in both the amorphous and crystalline samples. The results from this work showed that micro-scale features can be produced on the surface of amorphous Cu-Zr-Al alloys by CO2 laser processing.
Collections Ireland -> Dublin City University -> Publication Type = Article
Ireland -> Dublin City University -> DCU Faculties and Centres = DCU Faculties and Schools
Ireland -> Dublin City University -> Status = Published
Ireland -> Dublin City University -> DCU Faculties and Centres = DCU Faculties and Schools: Faculty of Engineering and Computing: School of Mechanical and Manufacturing Engineering
Ireland -> Dublin City University -> Subject = Engineering: Mechanical engineering
Ireland -> Dublin City University -> DCU Faculties and Centres = DCU Faculties and Schools: Faculty of Engineering and Computing
Ireland -> Dublin City University -> Subject = Engineering: Materials
Ireland -> Dublin City University -> DCU Faculties and Centres = Research Initiatives and Centres: Materials Processing Research Centre (MPRC)
Ireland -> Dublin City University -> Subject = Engineering
Ireland -> Dublin City University -> DCU Faculties and Centres = Research Initiatives and Centres

Full list of authors on original publication

D.J. Browne, Z Kovacs, Sumsun Naher, Dermot Brabazon, S.N. Aqida

Experts in our system

1
David J. Browne
University College Dublin
Total Publications: 38
 
2
Sumsun Naher
Dublin City University
Total Publications: 56
 
3
Dermot Brabazon
Dublin City University
Total Publications: 162