Type

Conference Proceedings

Authors

Andy Way
Josef van Genabith
Adams Bodomo
Ruth O'Donovan
Rowena Chan
Aoife Cahill
Olivia Lam
Michael Burke

Subjects

Linguistics

Topics
chinese lexical functional grammar lexical functional grammars constraint based grammatical resources constraint based grammars automatic annotation machine translating knowledge acquisition

Treebank-based acquisition of a Chinese lexical-functional grammar (2004)

Abstract Scaling wide-coverage, constraint-based grammars such as Lexical-Functional Grammars (LFG) (Kaplan and Bresnan, 1982; Bresnan, 2001) or Head-Driven Phrase Structure Grammars (HPSG) (Pollard and Sag, 1994) from fragments to naturally occurring unrestricted text is knowledge-intensive, time-consuming and (often prohibitively) expensive. A number of researchers have recently presented methods to automatically acquire wide-coverage, probabilistic constraint-based grammatical resources from treebanks (Cahill et al., 2002, Cahill et al., 2003; Cahill et al., 2004; Miyao et al., 2003; Miyao et al., 2004; Hockenmaier and Steedman, 2002; Hockenmaier, 2003), addressing the knowledge acquisition bottleneck in constraint-based grammar development. Research to date has concentrated on English and German. In this paper we report on an experiment to induce wide-coverage, probabilistic LFG grammatical and lexical resources for Chinese from the Penn Chinese Treebank (CTB) (Xue et al., 2002) based on an automatic f-structure annotation algorithm. Currently 96.751% of the CTB trees receive a single, covering and connected f-structure, 0.112% do not receive an f-structure due to feature clashes, while 3.137% are associated with multiple f-structure fragments. From the f-structure-annotated CTB we extract a total of 12975 lexical entries with 20 distinct subcategorisation frame types. Of these 3436 are verbal entries with a total of 11 different frame types. We extract a number of PCFG-based LFG approximations. Currently our best automatically induced grammars achieve an f-score of 81.57% against the trees in unseen articles 301-325; 86.06% f-score (all grammatical functions) and 73.98% (preds-only) against the dependencies derived from the f-structures automatically generated for the original trees in 301-325 and 82.79% (all grammatical functions) and 67.74% (preds-only) against the dependencies derived from the manually annotated gold-standard f-structures for 50 trees randomly selected from articles 301-325.
Collections Ireland -> Dublin City University -> Publication Type = Conference or Workshop Item
Ireland -> Dublin City University -> DCU Faculties and Centres = DCU Faculties and Schools: Faculty of Engineering and Computing: School of Computing
Ireland -> Dublin City University -> Subject = Computer Science
Ireland -> Dublin City University -> DCU Faculties and Centres = DCU Faculties and Schools
Ireland -> Dublin City University -> Status = Published
Ireland -> Dublin City University -> Subject = Computer Science: Machine translating
Ireland -> Dublin City University -> DCU Faculties and Centres = Research Initiatives and Centres: National Centre for Language Technology (NCLT)
Ireland -> Dublin City University -> DCU Faculties and Centres = DCU Faculties and Schools: Faculty of Engineering and Computing
Ireland -> Dublin City University -> DCU Faculties and Centres = Research Initiatives and Centres

Full list of authors on original publication

Andy Way, Josef van Genabith, Adams Bodomo, Ruth O'Donovan, Rowena Chan, Aoife Cahill, Olivia Lam, Michael Burke

Experts in our system

1
Andy Way
Dublin City University
Total Publications: 229
 
2
Josef van Genabith
Dublin City University
Total Publications: 115