Type

Journal Article

Authors

Catherine Stanton
Noel M Caplice
R Paul Ross
Gerald F Fitzgerald
Paul D. Cotter
Colin Hill
Fergus Shanahan
Orla O'Sullivan
Pat G. Casey
Rebecca Wall
and 2 others

Subjects

Microbiology

Topics
microbiology cholesterol liver glycosyltransferases diet enzymology microbiota lipid metabolism mice administration dosage metabolism dietary supplements triglycerides apolipoproteins e mice knockout prevention control genetics atherosclerosis gastrointestinal tract beta glucans pediococcus blood vascular cell adhesion molecule 1 gene expression regulation enzymologic lactobacillus probiotics animals disease models animal feces

Exopolysaccharide-producing probiotic Lactobacilli reduce serum cholesterol and modify enteric microbiota in ApoE-deficient mice. (2014)

Abstract Probiotic bacteria have been associated with a reduction in cardiovascular disease risk, a leading cause of death and disability. The aim of this study was to assess the impact of dietary administration of exopolysaccharide-producing probiotic Lactobacillus cultures on lipid metabolism and gut microbiota in apolipoprotein E (apoE)-deficient mice. First, we examined lipid metabolism in response to dietary supplementation with recombinant β-glucan-producing Lactobacillus paracasei National Food Biotechnology Centre (NFBC) 338 expressing the glycosyltransferase (Gtf) gene from Pediococcus parvulus 2.6 (GTF), and naturally exopolysaccharide-producing Lactobacillus mucosae Dairy Product Culture Collection (DPC) 6426 (DPC 6426) compared with the non-β-glucan-producing isogenic control strain Lactobacillus paracasei NFBC 338 (PNZ) and placebo (15% wt:vol trehalose). Second, we examined the effects on the gut microbiota of dietary administration of DPC 6426 compared with placebo. Probiotic Lactobacillus strains at 1 × 10(9) colony-forming units/d per animal were administered to apoE(-/-) mice fed a high-fat (60% fat)/high-cholesterol (2% wt:wt) diet for 12 wk. At the end of the study, aortic plaque development and serum, liver, and fecal variables involved in lipid metabolism were analyzed, and culture-independent microbial analyses of cecal content were performed. Total cholesterol was reduced in serum (P < 0.001; ∼33-50%) and liver (P < 0.05; ∼30%) and serum triglyceride concentrations were reduced (P < 0.05; ∼15-25%) in mice supplemented with GTF or DPC 6426 compared with the PNZ or placebo group, respectively. In addition, dietary intervention with GTF led to increased amounts of fecal cholesterol excretion (P < 0.05) compared with all other groups. Compositional sequencing of the gut microbiota revealed a greater prevalence of Porphyromonadaceae (P = 0.001) and Prevotellaceae (P = 0.001) in the DPC 6426 group and lower proportions of Clostridiaceae (P < 0.05), Peptococcaceae (P < 0.001), and Staphylococcaceae (P < 0.01) compared with the placebo group. Ingestion of exopolysaccharide-producing lactobacilli resulted in seemingly favorable improvements in lipid metabolism, which were associated with changes in the gut microbiota of mice.
Collections Ireland -> Teagasc -> PubMed

Full list of authors on original publication

Catherine Stanton, Noel M Caplice, R Paul Ross, Gerald F Fitzgerald, Paul D. Cotter, Colin Hill, Fergus Shanahan, Orla O'Sullivan, Pat G. Casey, Rebecca Wall and 2 others

Experts in our system

1
Catherine Stanton
Teagasc
Total Publications: 261
 
2
Noel M Caplice
University College Cork
 
3
R Paul Ross
Teagasc
Total Publications: 441
 
4
Gerald F Fitzgerald
Teagasc
Total Publications: 207
 
5
Paul D. Cotter
Teagasc
Total Publications: 253
 
6
Colin Hill
University College Cork
Total Publications: 351
 
7
Fergus Shanahan
University College Cork
Total Publications: 237
 
8
Orla O'Sullivan
Teagasc
Total Publications: 92
 
9
Pat G. Casey
University College Cork
Total Publications: 40
 
10
Rebecca Wall
Teagasc
Total Publications: 14