Type

Journal Article

Authors

M McGee
A. G. Fahey
M H Deighton
D.A. Kenny
C Fitzsimons

Subjects

Pharmacology

Topics
methane metabolism physiology rumen blood animals chemistry female cattle body composition energy metabolism fermentation

Methane emissions, body composition, and rumen fermentation traits of beef heifers differing in residual feed intake. (2013)

Abstract This study examined the relationship of residual feed intake (RFI) and performance with methane emissions, rumen fermentation, and digestion in beef heifers. Individual DMI and growth performance were measured for 22 Simmental heifers (mean initial BW 449 kg, SD = 46.2 kg) offered grass silage ad libitum for 120 d. Ultrasonically scanned muscle and fat depth, BCS, muscularity score, skeletal measurements, blood variables, rumen fermentation (via stomach tube), and total tract digestibility (indigestible marker) were measured. Methane production was estimated using the sulfur hexafluoride tracer gas technique over two 5-d periods beginning on d 20 and 75 of the RFI measurement period. Phenotypic RFI was calculated as actual DMI minus expected DMI. The residuals of the regression of DMI on ADG and midtest metabolic body weight, using all heifers, were used to compute individual RFI coefficients. Heifers were ranked by RFI and assigned to low (efficient), medium, or high (inefficient) groupings. Overall ADG and DMI were 0.58 kg (SD = 0.18) and 7.40 kg (SD = 0.72), respectively. High-RFI heifers consumed 9 and 15% more (P < 0.05) than medium- and low-RFI groups, respectively. Body weight, growth, skeletal, and composition traits did not differ (P > 0.05) between low- and high-RFI groups. High-RFI heifers had higher concentrations of plasma glucose (6%) and urea (13%) and lower concentrations of plasma creatinine (9%) than low-RFI heifers (P < 0.05). Rumen pH and apparent in vivo digestibility did not differ (P > 0.05) between RFI groups, although acetate:propionate ratio was lowest (P = 0.07) for low-RFI (3.5) and highest for high-RFI (4.6) heifers. Methane production expressed as grams per day or grams per kilogram metabolic body weight was greater (P < 0.05) for high (297 g/d and 2.9 g/kg BW0.75) compared with low (260 g/d and 2.5 g/kg BW0.75) RFI heifers, with medium (275 g/d and 2.7 g/kg BW0.75) RFI heifers being intermediate. Regression analysis indicated that a 1 kg DM/d increase in RFI was associated with a 23 g/d increase (P = 0.09) in methane emissions. Results suggest that improved RFI will reduce methane emissions without affecting productivity of growing beef cattle.
Collections Ireland -> Teagasc -> PubMed

Full list of authors on original publication

M McGee, A. G. Fahey, M H Deighton, D.A. Kenny, C Fitzsimons

Experts in our system

1
Mark McGee
Teagasc
Total Publications: 81
 
2
Alan G Fahey
University College Dublin
Total Publications: 34
 
3
D.A. Kenny
Teagasc
Total Publications: 147