Journal Article


J M Murre
I H Robertson



neural network model nerve net brain injuries physiology prognosis neuronal plasticity association learning rehabilitation

Rehabilitation of brain damage: brain plasticity and principles of guided recovery. (1999)

Abstract Rehabilitation of the damaged brain can foster reconnection of damaged neural circuits; Hebbian learning mechanisms play an important part in this. The authors propose a triage of post-lesion states, depending on the loss of connectivity in particular circuits. A small loss of connectivity will tend to lead to autonomous recovery, whereas a major loss of connectivity will lead to permanent loss of function; for such individuals, a compensatory approach to recovery is required. The third group have potentially rescuable lesioned circuits, but guided recovery depends on providing precisely targeted bottom-up and top-down inputs, maintaining adequate levels of arousal, and avoiding activation of competitor circuits that may suppress activity in target circuits. Empirical data are implemented in a neural network model, and clinical recommendations for the practice of rehabilitation following brain damage are made.
Collections Ireland -> Trinity College Dublin -> PubMed

Full list of authors on original publication

J M Murre, I H Robertson

Experts in our system

Ian H Robertson
Trinity College Dublin
Total Publications: 157