Journal Article


C Hill
B O'Driscoll
C G Gahan



listeria monocytogenes microbiology hydrogen ion concentration physiology adaptation physiological food microbiology animals milk fermentation

Acid adaptation of Listeria monocytogenes can enhance survival in acidic foods and during milk fermentation. (1996)

Abstract We have previously shown that tolerance to severe acid stress (pH 3.5) can be induced in Listeria monocytogenes following a 1-h adaptation to mild acid (pH 5.5), a phenomenon termed the acid tolerance response (ATR) (B. O'Driscoll, C. G. M. Gahan, and C. Hill, Appl. Environ. Microbiol. 62:1693-1698, 1966). In an attempt to determine the industrial significance of the ATR, we have examined the survival of adapted and nonadapted cells in a variety of acidic foods. Acid adaptation enhanced the survival of L. monocytogenes in acidified dairy products, including cottage cheese, yogurt, and whole-fat cheddar cheese. Acid-adapted L. monocytogenes cultures also demonstrated increased survival during active milk fermentation by a lactic acid culture. Similarly, acid-adapted cells showed greatly improved survival in low-pH foods (orange juice and salad dressing) containing acids other than lactic acid. However, in foods with a marginally higher pH, such as mozzarella cheese, a commercial cottage cheese, or low-fat cheddar cheese, acid adaptation did not appear to enhance survival. We have previously isolated mutants of L. monocytogenes that are constitutively acid tolerant in the absence of an induction step (O'Driscoll et al., Appl. Environ. Microbiol. 62:1693-1698, 1996). In the present study, one such mutant, ATM56, demonstrated an increased ability to survive in low-pH foods and during milk fermentation when compared with the wild-type strain. Significant numbers of ATM56 could be recovered even after 70 days in both whole-fat and low-fat cheddar cheese. Collectively, the data suggest that ATR mechanisms, whether constitutive or induced, can greatly influence the survival of L. monocytogenes in low-pH food environments.
Collections Ireland -> University College Cork -> PubMed

Full list of authors on original publication

C Hill, B O'Driscoll, C G Gahan

Experts in our system

Colin Hill
University College Cork
Total Publications: 351
Cormac G M Gahan
University College Cork
Total Publications: 109