Type

Journal Article

Authors

William M Gallagher
Kenneth A. Dawson
Stephen R Pennington
Alan K Keenan
Iseult Lynch
Stephen C Penney
Darran P O'Connor
Ian S Miller
Miriam Tosetto
Lorcan T Allen

Subjects

Biochemistry

Topics
blood proteins biocompatible materials culture media focal adhesions pharmacology phosphorylation polystyrenes mitogen activated protein kinase 3 focal adhesion kinase 1 adsorption microscopy fluorescence cell adhesion acrylamides poly n isopropylacrylamide n tert butylacrylamide copolymer humans fibronectins surface properties gene expression drug effects serum albumin microscopy confocal chemistry signal transduction ptk2 protein human protein binding cell movement metabolism hydrophobic and hydrophilic interactions mitogen activated protein kinase 1 hela cells

Surface-induced changes in protein adsorption and implications for cellular phenotypic responses to surface interaction. (2005)

Abstract Understanding external factors that determine cellular phenotypic responses is of key interest in the field of biomaterials. Currently, material surface characteristics, protein adsorption and cellular phenotypic responses are all considered to be interrelated and ultimately determine the biocompatibility of materials. The exact nature of the relationship between these distinct, yet related, phenomena still remains to be elucidated. Through the use of a series of thermoresponsive N-isopropylacrylamide-based co-polymer films, we aimed to shed light on the relationship between surface hydrophobicity, protein adsorption and subsequent cellular response. Despite changes in co-polymer hydrophobicity mediated by altered ratios of constituent monomers, differential cellular response was only apparent in the presence of serum. Co-polymer films displayed alterations with respect to the amount of protein adsorbed on the surface, with individual serum proteins (albumin and fibronectin) displaying contrasting adsorption characteristics. Changes in protein adsorption corresponded to changes in cell adhesion, cytoskeletal organisation and cell morphology, as well as to changes in cell movement and intracellular signalling events. Examination of focal adhesion kinase (FAK), and extracellular signal-regulated kinase (ERK 1/2), important mediators of adhesion and growth factor-related signalling events, revealed a comparative reduction in phosphorylation of these signalling proteins in cells grown on co-polymers in comparison to those cultured on tissue culture polystyrene (TCP; used as a control surface). We also associated surface-mediated phenotypic alterations of cells grown on TCP and co-polymer films with particular changes in gene expression. These results indicate that cellular response to interaction with our series of co-polymer films is determined by the surface-adsorbed protein layer, which in turn is determined by the changing surface chemistry as the ratio of the co-monomers is altered.
Collections Ireland -> University College Dublin -> PubMed

Full list of authors on original publication

William M Gallagher, Kenneth A. Dawson, Stephen R Pennington, Alan K Keenan, Iseult Lynch, Stephen C Penney, Darran P O'Connor, Ian S Miller, Miriam Tosetto, Lorcan T Allen

Experts in our system

1
William M Gallagher
University College Dublin
Total Publications: 148
 
2
Kenneth A. Dawson
University College Dublin
Total Publications: 152
 
3
Stephen R Pennington
University College Dublin
 
4
Iseult Lynch
University College Dublin
Total Publications: 54
 
5
Darran P O'Connor
Royal College of Surgeons in Ireland
Total Publications: 43
 
6
Ian S Miller
University College Dublin
Total Publications: 14
 
7
Miriam Tosetto
Trinity College Dublin
Total Publications: 15