Type

Journal Article

Authors

Brian P Carson
Patrick A Kiely
Philip M Jakeman
Maeve Kiely
Sylvia M Murphy

Subjects

Physiotherapy & Sport

Topics
electric impedance muscle hypertrophy formation cell culture muscle skeletal monitor real time optimisation

Optimisation of an in vitro bioassay to monitor growth and formation of myotubes in real time. (2015)

Abstract The importance of growth and maintenance of skeletal muscle is vital for long term health and quality of life. Appropriate nutrition with specific bioactivities relevant to the functionalities of tissues such as skeletal muscle, can assist in maintaining and promoting adaptive responses to biological and environmental stresses which prevent muscle atrophy and promote hypertrophy. The aim of this investigation was to develop a novel in vitro cell-based electric impedance assay to study myoblast to myotube formation on the Real Time Cell Analysis (RTCA) platform (xCELLigenceâ„¢, ACEA) and to validate the system by testing myotube responses to hypertrophic stimuli. C2C12 myoblasts were proliferated until 70% confluent in DMEM (10% FBS) and subsequently differentiated to myotubes over 8 days in DMEM (2% HS). Changes in cell behavior and adhesion properties were monitored by measuring impedance via interdigitated microelectrodes in the base of E-16 cell culture dishes. To establish the suitability of this assay to monitor nutrient regulation of muscle hypertrophy, leucine, a known potent regulator of MPS was then supplemented to the fully formed myotubes in physiologically relevant conditions - 0.20mM, 0.40mM, 0.6mM, 0.8mM and above 1.0mM, 1.5mM, 2.0mM and impedance subsequently monitored. Parallel experiments highlighting alterations in myotube thickness, MPS (mTOR) and differentiation (Myogenin) were conducted to support RTCA bioassay findings. This in vitro bioassay can be used to monitor skeletal muscle behaviour and identify nutrient compounds with bioactivities promoting skeletal muscle hypertrophy, reducing muscle atrophy and thus inform the development of novel nutrient formulations for maintenance of skeletal muscle.
Collections Ireland -> University of Limerick -> PubMed

Full list of authors on original publication

Brian P Carson, Patrick A Kiely, Philip M Jakeman, Maeve Kiely, Sylvia M Murphy

Experts in our system

1
Brian P Carson
University of Limerick
Total Publications: 37
 
2
Patrick A Kiely
University of Limerick
Total Publications: 55
 
3
Philip M Jakeman
University of Limerick
Total Publications: 63
 
4
Maeve Kiely
University of Limerick
Total Publications: 11
 
5
Sylvia M Murphy
University of Limerick
Total Publications: 4