Journal Article


Caitriona Lally
Eoghan Joseph Maher
Daniel Kelly



mechanical properties arterial tissue constitutive mode stent coronary next generation medical devices inelasticity bioengineering angioplasty

An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue (2012)

Abstract Inelastic phenomena such as softening and unrecoverable inelastic strains induced by loading have been observed experimentally in soft tissues such as arteries. These phenomena need to be accounted for in constitutive models of arterial tissue so that computational models can accurately predict the outcomes of interventional procedures such as balloon angioplasty and stenting that involve non-physiological loading of the tissue. In this study, a novel constitutive model is described that accounts for inelastic effects such as Mullins-type softening and permanent set in a fibre reinforced tissue. The evolution of inelasticity is governed by a set of internal variables. Softening is introduced through a typical continuum damage mechanics approach, while the inelastic residual strains are introduced through an additive split in the stress tensor. Numerical simulations of aorta and carotid arterial tissue subjected to uniaxial testing in the longitudinal, circumferential and axial directions are used to demonstrate the model?s ability to reproduce the anisotropic inelastic behaviour of the tissue. Material parameters derived from best-fits to experimental data are provided to describe these inelastic effects for both aortic and carotid tissue.
Collections Ireland -> Trinity College Dublin -> Mechanical & Manufacturing Eng (Scholarly Publications)
Ireland -> Trinity College Dublin -> RSS Feeds
Ireland -> Trinity College Dublin -> RSS Feeds
Ireland -> Trinity College Dublin -> School of Engineering
Ireland -> Trinity College Dublin -> Mechanical & Manufacturing Eng

Full list of authors on original publication

Caitriona Lally, Eoghan Joseph Maher, Daniel Kelly

Experts in our system

CaitrĂ­ona Lally
Trinity College Dublin
Total Publications: 36
Daniel Kelly
Trinity College Dublin
Total Publications: 190