In this paper we propose ResnetCrowd, a deep residual architecture for simultaneous crowd counting, violent behaviour detection and crowd density level classification. To train and evaluate the proposed multi-objective technique, a new 100 image dataset referred to as Multi Task Crowd is constructed. This new dataset is the first computer vision dataset fully annotated for crowd counting, violent behaviour detection and density level classification. Our experiments show that a multi-task approach boosts individual task performance for all tasks and most notably for violent behaviour detection which receives a 9\% boost in ROC curve AUC (Area under the curve). The trained ResnetCrowd model is also evaluated on several additional benchmarks highlighting the superior generalisation of crowd analysis models trained for multiple objectives.
Ireland ->
Dublin City University ->
Publication Type = Conference or Workshop Item
Ireland ->
Dublin City University ->
Subject = Computer Science: Image processing
Ireland ->
Dublin City University ->
Subject = Computer Science
Ireland ->
Dublin City University ->
Status = Published
Ireland ->
Dublin City University ->
DCU Faculties and Centres = DCU Faculties and Schools: Faculty of Engineering and Computing: School of Electronic Engineering
Noel E. O'Connor,
Suzanne Little,
Kevin McGuinness,
Mark Marsden