Type

Journal Article

Authors

Birgit Bossenmaier
Martin Weisser
Andrés Cervantes
John Crown
Max Hasmann
Ian James
Maurizio Ceppi
Juan Miguel Cejalvo
Wolfgang Jacob
Denis Collins

Subjects

Biochemistry

Topics
family human cells epidermal growth factor gene amplification cross talk sensitivity breast cancer estrogen receptor

Direct estrogen receptor (ER) / HER family crosstalk mediating sensitivity to lumretuzumab and pertuzumab in ER+ breast cancer. (2017)

Abstract Bidirectional cross talk between members of the human epidermal growth factor family of receptors (HER) and the estrogen receptor (ER) is believed to underlie resistance mechanisms that develop in response to treatment with anti-HER agents and endocrine therapy. We investigated the interaction between HER2, HER3 and the ER in vitro using human embryonic kidney cells transfected with human HER2, HER3, and ERα. We also investigated the additive efficacy of combination regimens consisting of anti-HER3 (lumretuzumab), anti-HER2 (pertuzumab), and endocrine (fulvestrant) therapy in vivo. Our data show that both HER2 and HER3 can directly complex with the ER and can mediate phosphorylation of the ER. Phosphorylation of the ER was only observed in cells that expressed both HER2 and ERα or in heregulin-stimulated cells that expressed both HER3 and ERα. Using a mouse xenograft model of ER+/HER2-low (HER2 immunohistochemistry 1+ or 2+ without gene amplification) human breast cancer we show that the combination of lumretuzumab and pertuzumab is highly efficacious and induces long-lasting tumor regression in vivo and adding endocrine therapy (fulvestrant) to this combination further improved efficacy. In addition, a prolonged clinical response was observed with the combination of lumretuzumab and pertuzumab in a patient with ER+/HER2-low breast cancer who had failed endocrine therapy. These preclinical data confirm that direct cross talk exists between HER2/HER3 and ER which may explain the resistance mechanisms to endocrine therapy and monoclonal antibodies that target HER2 and HER3. Our data also indicate that the triplet of anti-HER2, anti-HER3, and endocrine therapy might be an efficacious combination for treating patients with ER+/HER2-low breast cancer, which is an area of significant unmet medical need.
Collections Ireland -> Dublin City University -> PubMed

Full list of authors on original publication

Birgit Bossenmaier, Martin Weisser, Andrés Cervantes, John Crown, Max Hasmann, Ian James, Maurizio Ceppi, Juan Miguel Cejalvo, Wolfgang Jacob, Denis Collins

Experts in our system

1
John Crown
Dublin City University
Total Publications: 104
 
2
Denis M Collins
Dublin City University
Total Publications: 26