Type

Journal Article

Authors

Brian M Caulfield
Eamonn Delahunt
Tomas E Ward
Darragh F Whelan
Martin A OʼReilly

Subjects

Computer Science

Topics
recent developments wearable sensors wearable technology lumbar spine inertial measurement mobile computing real time strength and conditioning

Technology in Strength and Conditioning: Assessing Bodyweight Squat Technique With Wearable Sensors. (2017)

Abstract O'Reilly, MA, Whelan, DF, Ward, TE, Delahunt, E, and Caulfield, BM. Technology in strength and conditioning: assessing bodyweight squat technique with wearable sensors. J Strength Cond Res 31(8): 2303-2312, 2017-Strength and conditioning (S&C) coaches offer expert guidance to help those they work with achieve their personal fitness goals. However, it is not always practical to operate under the direct supervision of an S&C coach and consequently individuals are often left training without expert oversight. Recent developments in inertial measurement units (IMUs) and mobile computing platforms have allowed for the possibility of unobtrusive motion tracking systems and the provision of real-time individualized feedback regarding exercise performance. These systems could enable S&C coaches to remotely monitor sessions and help individuals record their workout performance. One aspect of such technologies is the ability to assess exercise technique and detect common deviations from acceptable exercise form. In this study, we investigate this ability in the context of a bodyweight (BW) squat exercise. Inertial measurement units were positioned on the lumbar spine, thighs, and shanks of 77 healthy participants. Participants completed repetitions of BW squats with acceptable form and 5 common deviations from acceptable BW squatting technique. Descriptive features were extracted from the IMU signals for each BW squat repetition, and these were used to train a technique classifier. Acceptable or aberrant BW squat technique can be detected with 98% accuracy, 96% sensitivity, and 99% specificity when using features derived from all 5 IMUs. A single IMU system can also distinguish between acceptable and aberrant BW squat biomechanics with excellent accuracy, sensitivity, and specificity. Detecting exact deviations from acceptable BW squatting technique can be achieved with 80% accuracy using a 5 IMU system and 72% accuracy when using a single IMU positioned on the right shank. These results suggest that IMU-based systems can distinguish between acceptable and aberrant BW squat technique with excellent accuracy with a single IMU system. Identification of exact deviations is also possible but multi-IMU systems outperform single IMU systems.
Collections Ireland -> Maynooth University -> PubMed

Full list of authors on original publication

Brian M Caulfield, Eamonn Delahunt, Tomas E Ward, Darragh F Whelan, Martin A OʼReilly

Experts in our system

1
Brian Caulfield
University College Dublin
Total Publications: 273
 
2
Eamonn Delahunt
University College Dublin
Total Publications: 115
 
3
Tomas Ward
Maynooth University
Total Publications: 177
 
4
Darragh Whelan
Maynooth University
Total Publications: 14